Friday, May 18, 2012

Accretionary Wedge

Accretionary Wedge

Structurally complex parts of subduction zone systems, accretionary wedges are formed on the landward side of the trench by material scraped off from the subducting plate as well as trench fill sediments. They typically have wedge-shaped cross sections and have one of the most complex internal structures of any tectonic element known on Earth. Parts of accretionary wedges are characterized by numerous thin units of rock layers that are repeated by numerous thrust faults, whereas other parts or other wedges are characterized by relatively large semi-coherent or folded packages of rocks. They also host rocks known as tectonic mélanges that are complex mixtures of blocks and thrust slices of many rock types (such as graywacke, basalt, chert, and limestone) typically encased in a matrix of a different rock type (such as shale or serpentinite). Some accretionary wedges contain small blocks or layers of high-pressure lowtemperature
metamorphic rocks (known as blueschists) that have formed deep within the wedge where pressures are high and temperatures are low because of the insulating effect of the cold subducting plate. These high-pressure rocks were brought to the surface by structural processes. Accretionary wedges grow by the progressive offscraping of material from the trench and subducting plate, which constantly pushes new material in front of and under the wedge as plate tectonics drives plate convergence. The type and style
of material that is offscraped and incorporated into the wedge depends on the type of material near the surface on the subducting plate. Subducting plates with thin veneers of sediment on their surface yield packages in the accretionary wedge dominated by basalt and chert rock types, whereas subducting plates with thick sequences of graywacke sediments yield packages in the accretionary wedge dominated by
graywacke. They may also grow by a process known as underplating, where packages (thrust slices of rock from the subducting plate) are added to the base of the accretionary wedge, a process that typically causes folding of the overlying parts of the wedge. The fronts or toes of accretionary wedges are also characterized by material slumping off of the steep slope of the wedge into the trench. This material may then be recycled back into the accretionary wedge, forming even more complex structures. Together, the processes of offscraping and underplating tend to steepen structures and rock layers from an orientation that is near horizontal at the toe of the wedge to near vertical at the back of the wedge. The accretionary wedges are thought to behave mechanically somewhat as if they were piles of sand bulldozed in front of a plow. They grow a triangular wedge shape that increases its slope until it becomes oversteepened and mechanically unstable, which will then cause the toe of the wedge to advance by thrusting, or the top of the wedge to collapse by normal faulting. Either of these two processes can reduce the slope of the wedge and lead it to become more stable. In addition to finding the evidence for thrust faulting in accretionary wedges, structural geologists have documented many examples of normal faults where the tops of the wedges have collapsed, supporting models of extensional collapse of oversteepened wedges. Accretionary wedges are forming above nearly every subduction zone on the planet. However, these accretionary wedges presently border open oceans that have not yet closed by plate tectonic processes. Eventually, the movements of the plates and continents will cause the accretionary wedges to become involved in plate collisions that will dramatically
change the character of the accretionary wedges. They are typically overprinted by additional shortening, faulting, folding, and high-temperature metamorphism, and intruded by magmas related to arcs and collisions. These later events, coupled with the initial complexity and variety, make identification of accretionary wedges in ancient mountain belts difficult, and prone to uncertainty.

No comments:

Post a Comment